Performance of Levenberg-Marquardt Neural Network Algorithm in Air Quality Forecasting
نویسندگان
چکیده
Levenberg-Marquardt algorithm and conjugate gradient method are frequently used for optimization in multi-layer perceptron (MLP). However, both algorithms have mixed conclusions optimizing MLP time series forecasting. This study uses autoregressive integrated moving average (ARIMA) with method. These methods were to predict the Air Pollutant Index (API) Malaysia's central region where represent urban residential areas. The performances discussed compared using mean square error (MSE) absolute percentage (MAPE). result shows that models outperformed ARIMA
منابع مشابه
Calibration of an Inertial Accelerometer using Trained Neural Network by Levenberg-Marquardt Algorithm for Vehicle Navigation
The designing of advanced driver assistance systems and autonomous vehicles needs measurement of dynamical variations of vehicle, such as acceleration, velocity and yaw rate. Designed adaptive controllers to control lateral and longitudinal vehicle dynamics are based on the measured variables. Inertial MEMS-based sensors have some benefits including low price and low consumption that make them ...
متن کاملLevenberg-Marquardt Algorithm for Karachi Stock Exchange Share Rates Forecasting
Financial forecasting is an example of signal processing problems. A number of ways to train/learn the network are available. We have used Levenberg-Marquardt algorithm for error back-propagation for weight adjustment. Pre-processing of data has reduced much of the variation at large scale to small scale, reducing the variation of training data. Keywords— Gradient descent method, jacobian matri...
متن کاملLevenberg Marquardt ( LM ) Algorithm 1 –
1 – Introduction Parameter estimation for function optimization is a well established problem in computing, as there are countless applications in practice. For this work, we will focus specifically in implementing a distributed and parallel implementation of the Levenberg Marquardt algorithm, which is a well established numerical solver for function approximation given a limited data set. Para...
متن کاملNeural Network Hybrid Learning: Genetic Algorithms & Levenberg-Marquardt
The success of an Artificial Neural Network (ANN) strongly depends on its training process. Gradient-based techniques have been satisfactorily used in the ANN training. However, in many cases, these algorithms are very slow and susceptible to the local minimum problem. In our work, we implemented a hybrid learning algorithm that integrates Genetic Algorithms(GAs) and the LevenbergMarquardt(LM) ...
متن کاملAn accelerated Levenberg-Marquardt algorithm for feedforward network
This paper proposes a new Levenberg-Marquardt algorithm that is accelerated by adjusting a Jacobian matrix and a quasi-Hessian matrix. The proposed method partitions the Jacobian matrix into block matrices and employs the inverse of a partitioned matrix to find the inverse of the quasi-Hessian matrix. Our method can avoid expensive operations and save memory in calculating the inverse of the qu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Sains Malaysiana
سال: 2021
ISSN: ['0126-6039', '2735-0118']
DOI: https://doi.org/10.17576/jsm-2022-5108-23